

Optical Communications at JPL

K.Wilson

Outline

- JPL programs
 - Past
 - Multi-bit per photon
 - GOPEX demonstration
 - GOLD demonstration
 - STRV-2 demonstration
 - Present
 - ST-6 ATP Phase A study
 - 10-m deep space receiver study
 - 1-m Optical Communications Telescope Laboratory development
 - · High efficiency Mbps deep space laser
 - Future
 - AIST ground demonstration of LEO-GEO communications strategies
 - · Air to ground demonstrations
 - DC-8 to ground
 - Global Hawk to ground with JPL Optical Communications Demonstrator EM
 - Summary

April 26, 2001

K. Wilson, AIAA Workshop

Past demonstrations

- JPS has performed both technology and system level optical communications demonstrations for near-Earth and deep-space links
 - 1982=> Demonstrated first multi-bit/photon optical communications link using pulse position modulation
 - 1992 => Demonstrated first optical link to deep space
 - 1994 => Demonstrated with SOR adaptive optics plink to lunar retroreflectors
 - 1995 1996 => Demonstrated 1 Mbps bi-directional link to Japanese ETS-VI satellite at apogee of GTO
 - 2000=> Worked with AstroTerra Corp on optical link to STRV-2 lasercom terminal on TSX-5 satellite
 - Unexpectedly large errors n ephemeris precluded acquisition and tracking of s/c
 - Failure of lasercom terminal's computer caused early termination of experiment

Optical communications developments

*

- Ball/ JPL team is currently working on New Millennium Phase A study
 - Will assess and validate readiness of Acquisition, Tracking and Pointing technology for deep space optical communications missions
- JPL is currently studying the cost drivers for a 10-m class 100X diffraction-limited ground-based telescope for deep space-to-ground optical link.

April 26, 2001

K. Wilson, AIAA Workshop

1-m Optical Telescope

- JPL 1-m telescope is scheduled for delivery in November
 - First light expected by December 2001

April 26, 2001

K. Wilson, AIAA Workshop

LEO-GEO link

- JPL currently plans to demonstrate of multi-gigabit ground-to-ground optical communications link using LEO-GEO architecture
 - Demonstration is a first step towards a multi-gigabit LEO-GEO and GEO to ground demonstration to support data return from future NASA advanced high data rate space platforms

Future Air-to-ground demonstrations

*

Phase -1 TREX-JPL DC-8-toground demonstration

Phase-2 JPL UAV-to-ground demo

JPL Optical demonstrator terminal for UAV demonstration

High data-rate laser

- JPL is working with HRL to develop a multi-Watt high-efficiency laser to support Mbps links from deep space
 - Breadboard is expected to be developed by 2003

Summary

- JPL has developed a robust optical communications program over the years and has demonstrated optical links to both deep space and near-Earth probes
- Current thrusts include
 - Development of a 1-m Optical Communications Telescope Laboratory
 - Studies of low-cost 10-m deep space receiver telescope
- Future plans call for
 - Demonstration of aircraft-to-ground links
 - Validation of acquisition tracking and pointing for deep space optical communications
 - Demonstration of multi-gigabit link using LEO-GEO optical communications architecture
 - Development of high-efficiency Mbps lasers for future deep space links